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Abstract
We present a method for predicting the midsagittal tongue

contour from the locations of a few landmarks (metal pellets)
on the tongue surface, as used in articulatory databases such
as MOCHA and the Wisconsin XRDB. Our method learns a
mapping using ground-truth tongue contours derived from ul-
trasound data and drastically improves over spline interpolation.
We also determine the optimal locations of the landmarks, and
the number of landmarks required to achieve a desired predic-
tion error: 3–4 landmarks are enough to achieve 0.3–0.2 mm
error per point on the tongue.
Index Terms: ultrasound, midsagittal tongue contour, tongue
tracking, articulatory database

1. Introduction
We consider the problem of reconstructing the shape of the
tongue given the location of a few landmarks on its surface.
For example, two articulatory databases (Fig. 1), the Wiscon-
sin XRDB (using X-ray microbeam) [1] and MOCHA-TIMIT
(using EMA) [2] give the 2D locations of 3–4 metal pellets at-
tached to the tongue tip and dorsum (as well as the locations of
the lips and other articulators, and the acoustic wave). Given
the location of these pellets at a given time, what does the entire
tongue shape look like? In fact, are 3–4 pellets enough to char-
acterise the tongue shape accurately at all? The ability to derive
the full tongue shape from a few pellets would allow to animate
the tongue shape for visualisation purposes, and could be used
as an input to methods for articulatory speech synthesis and in-
version. It would also help to determine the optimal number
and placement of pellets during EMA or X-ray recording.

In this paper, we focus on reconstructing the midsagittal
contour of the tongue rather than its full 3D shape, because our
ultrasound data is limited to 2D images. However, our approach
extends to the 3D case. A simple reconstruction approach (that
we and others have used) is to fit a smooth contour (e.g. a cubic
or even piecewise linear spline) to the landmarks, justified by
the observation that the tongue body is continuous and reason-
ably smooth during speech. However, smoothness is not enough
to characterise the real behaviour of the tongue, which can dis-
play very complex shapes during normal speech. For exam-
ple, its midsagittal contour can show humps or valleys between
landmarks or bend significantly in the tip or root (Figs. 2 and 4);
and the tongue cannot go through the palate or teeth. It is possi-
ble to try to model the tongue shape by having a function with
many control parameters and to model compression against the
palate or teeth by assuming constant volume, as done in the
Baldi talking head [3]. However, setting these parameters is
difficult and time-consuming even for an expert, and even un-

Fig. 1. Location of pellets in two articulatory databases: XRDB
(left, 4 tongue pellets), MOCHA (right, 3 tongue pellets).

der the best settings the predicted shape may not look realistic
enough. A similar problem arises in computer animation of the
human body, where a combination of motion-capture and ma-
chine learning are able to reproduce realistic motion.

In this paper, we follow a machine learning approach,
where we estimate a nonlinear mapping from the landmark lo-
cations to the tongue contour using ultrasound data recorded for
a subject during normal continuous speech. With this ground
truth, estimating the optimal parameters can be done by numer-
ical minimisation of the reconstruction error, and we find that
the predicted tongue contours look very realistic. Our approach
is similar to that of [4], who considered inferring midsagittal
pharynx shapes from the tongue using MRI data but limited to
11 static vowels and using linear regression. In addition, we
can also estimate the optimal location of the landmarks on the
tongue, and the number of landmarks we need to achieve a given
error. Section 2 describes the data collection, section 3 the pre-
dictive model and section 4 the experimental results.

2. Data collection
In order to be able to map landmarks to a full tongue contour,
we need ground-truth data for tongue contours. Specifically, we
consider a dataset consisting (for a given speaker) of N con-
tours {yn}

N
n=1, where each contour y ∈ R

2P is a vector giving
the 2D coordinates of each of P points along the tongue. We
collected such a dataset from ultrasound recordings.

Tongue contour tracking from ultrasound Unlike EMA
and X-ray microbeam, ultrasound technology can image real-
time movement of the entire midsagittal tongue contour during
speech in a noninvasive and unobtrusive way. Other advantages,
such as high temporal resolution, portability and low cost make
it very appealing in speech research. Ultrasound has disadvan-
tages as well: the images contain speckle noise and unrelated
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Teeth shadow
(front)

(back)
Hyoid bone shadow

Midsagittal tongue contour

Fig. 2. Typical ultrasound tongue images. Artifacts such as
noise, invisibility of tongue parts, bone shadows, sound reflec-
tion and interlacing video coding present difficulties for auto-
matic tongue contour tracking.

Fig. 3. Left: ultrasound machine used. Right: device to stabilise
the head (to reduce motion wrt the ultrasound probe).

edges; it does not image passive articulators, only the tongue;
and the only image area that is visible is between the thyroid
cartilage and the front of the mandible because of shadows; see
[9] for a guide on using ultrasound to analyse tongue motion.
(Recording ultrasound and EMA simultaneously is difficult due
to interference between the two channels, although such a dual-
channel database [6] is being investigated.)

Given a set of 2D ultrasound images of a tongue (Fig. 2
shows two sample images), our goal is to extract the tongue
contour (the lower edge of the highlighted strip) from each im-
age. Manual tracking of the tongue contours suffers from sev-
eral drawbacks well known in biomedical image analysis, in-
cluding user bias, user fatigue, and not being able to achieve
reproducible results. Also, it becomes infeasible for a large
number of ultrasound images. Therefore, it is crucial to have
an automated system for tongue movement analysis. However,
the noisy nature of ultrasound images makes it very difficult
to track tongue shapes reliably and automatically (see [5] for a
comprehensive survey on ultrasound image segmentation), and
this is compounded when dealing with multiple utterances and
speakers. Since in our study it was important to obtain high-
quality ground-truth contours, we adopted a semi-automatic ap-
proach: we used a state-of-the-art contour tracking algorithm,
which gave us a reasonable tongue contour at each frame, and
then we adjusted the contours manually if necessary. We used
the automatic tongue contour tracking software EdgeTrak [7].
Its algorithm is essentially based on the active contour algorithm
of [8], which iteratively minimises an energy function designed
to detect contours of the object in the image. We observed in
practice that the algorithm could get stuck at a local minimum
and lose track, hence the need for manual corrections.

As discussed, obtaining ground-truth tongue contours is ei-
ther unreliable (with automatic methods) or time-consuming
(with manual methods). Future work should address the issue
of adapting a model learned on a dataset (e.g. from one speaker)
to a different setting (e.g. a different speaker).

Tongue contour dataset Following the procedure described
above, we have created an ultrasound database at Queen Mar-
garet University and the University of Edinburgh. It contains
two speakers (one male, maaw0, and one female, feal0) with
different Scottish accents. Two data streams were recorded syn-
chronously for each speaker: acoustic waves (which we did
not use in this study) and ultrasound videos. The ultrasound
recorded the movements of the tongue in the midsagittal plane
at 100 Hz. Each speaker recorded a set of 20 British TIMIT
sentences designed to be phonetically balanced. In this study,
we use data from maaw0, consisting of two parts: one part con-
tains 800 image frames from one utterance (db1); the other part
contains 6 000 image frames from 10 utterances but recorded in
a separate session (db2).

Although the ultrasound probe is held against the chin while
recording, it is possible in principle that the chin and the probe
shift with respect to each other during recording. This would re-
quire normalising the contours wrt a fixed reference. However,
we found this unnecessary for two reasons: in a pilot exper-
iment, we compared the prediction results with normalisation
(by shifting the data to zero mean and a given orientation) and
without normalisation, and found little difference; in addition,
we used a device (Fig. 3) to stabilise the probe wrt the head.
Thus, the experiments described here used no normalisation.

3. Predictive model
We define the tongue reconstruction problem as follows. Of
the P points along the contour, we choose K (say, 3) to rep-
resent the landmarks, or pellets affixed to the tongue (call this
vector x ∈ R

2K ). We then want to predict all P points (or
rather, the remaining P − K) using a mapping f(x) = y that
we estimate from a training set. We represent f using a ra-
dial basis function (RBF) network [10]: f(x) = WΦ(x) with
weight matrix W of 2P × M and M Gaussian basis func-
tions φi(x) = exp

`
− 1

2
‖(x− μi)/σ‖2

´
with centre μi and

width σ. The reason for choosing a RBF network is that, be-
sides being able to approximate many mappings accurately, it
also simplifies considerably our computations. We can fix the
RBF centres μi once and for all on the basis of the training set
of contours {yn}

N
n=1 (e.g. by vector quantisation) and estimate

W depending on the choice of landmarks x by solving a linear
least-squares problem (without local minima).

As interpolation method (not based on a training set), we
use a cubic B-spline (Matlab function spline).

4. Experimental results
RBF prediction vs. spline interpolation of the tongue contour
We trained a RBF network on database db1, with parameters
found by cross-validation (M = 110 basis functions fitted by
k–means with 10 random initialisations; σ = 20 mm). Fig. 4
compares in selected frames the true tongue contour and the
contours estimated by spline interpolation and by our RBF
prediction, given K = 3 fixed landmarks (representing 3 EMA
pellets). Fig. 4 also illustrates the rather complex shapes that
the tongue can adopt, with significant changes in curvature,
in particular when raising the tip. The contour predicted by
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Fig. 4. Selected frames comparing the true contour (cyan) and the contours estimated by the spline interpolation (green) and our RBF
prediction (red), for K = 3 landmarks (yellow dots). Frame 754 shows indicative 10 mm scale bars.

the RBF overlaps almost perfectly with the true contour, so
the latter is barely visible. The spline contour often deviates
significantly from the true one. For example, since the spline
behaves like an elastic bar, it is impossible for it to predict a
sharp valley or hump between two adjacent landmarks (frames
97, 205, 553). When the landmarks are aligned (e.g. frames
428, 754) the spline naturally adopts a straight line shape,
which is physically infeasible for the tongue, and different
indeed from the true contour. In all these situations the RBF
prediction works very well. The advantage of the prediction
based on a training set is largest when extrapolating beyond the
end landmarks, near the root or the tip of the tongue.

Optimal number and location of the landmarks In this ex-
periment, we used database db2. In order to determine the opti-
mal location of K landmarks, we would need to fit a predictor to
each of the

`
P
K

´
combinations (where our contours have P = 24

points). We limit the computational cost involved as follows.
(1) By using a RBF network with fixed basis function centres
and width, we only need to estimate the linear weights W for
each combination. (2) We ignore unreasonable arrangements of
landmarks by dividing the contour into K consecutive segments
and constraining each landmark to select points from one; for
example, for K = 3, landmarks 1, 2 and 3 can only select points
1–8, 9–16 and 17–24, respectively. This prevents landmarks
from being all very close, or very far from each other, which un-
doubtedly would lead to a much worse prediction. This resulted
in 145, 513, 1297, 2501 combinations for K = 2, 3, 4, 5, resp.
The number of combinations for K = 6 (4900+) or higher re-
quired too much computer time for this study. For each combi-
nation, we performed 5-fold cross-validation to choose the opti-
mal parameters and reported the averaged reconstruction errors.
The optimal parameters of the RBF network (M, σ) (number of
BFs and width in mm) were:

K K = 2 K = 3 K = 4 K = 5
(M, σ) (410, 19) (400, 13) (410, 19) (490, 19)

We report the root-mean-square error (RMSE) in mm for each
contour point i = 1, . . . , P : ( 1

N

PN
n=1 (y

(n)
i − ŷ

(n)
i )2)1/2 in

Fig. 5 (left), where n is the index of the contour in the dataset
(with N = 6 000 contours for db2), and yn and ŷn are the true
and reconstructed tongue contours, respectively. Fig. 5 (right)
reports the RMSE averaged over the P contour points.

Fig. 5 (left) shows that the prediction errors at each con-
tour point are roughly symmetric around the fixed landmarks,
with the lowest (zero) error at the landmarks themselves, and
the highest error approximately in the midpoint between land-
marks, or at the ends of the contour. The errors are largest at the
tip of the tongue, consistent with its movement being the most
complex. From Fig. 5 (right), using only 2 landmarks yields
an optimal error of 0.6 mm, while using 3 yields less than 0.3
mm and 4 yields 0.2 mm. Using more landmarks yields dimin-
ishing returns; it is also practically harder to attach that many
pellets to the tongue. The line labelled “worst” is actually not
much worse than the optimal, because we have ruled out pel-
let arrangements that would indeed yield a far larger error (e.g.
having all pellets next to each other).

For the spline interpolation, we predicted the contour y by
considering a uniform grid of P locations along the X axis
(with known Y values for K points) and applying to it the spline
function. Consistent with the previous section, the spline inter-
polation (Fig. 6) is always much worse (by an order of magni-
tude) than the RBF prediction, although its error improves as K
increases.

Fig. 7 shows the optimal location of the landmarks for
K = 2 to 5. The landmarks are roughly equidistant along
the tongue contour, but somewhat closer to each other near the
tongue tip, consistent with the fact that the tongue tip shows
more complex movements than the rest of the tongue. The end
landmarks are close to the contour ends (tip and back), but not
right at the ends. The scale bar allows to determine the posi-
tions in mm, and (after rescaling by the total tongue length) one
can determine the approximately optimal placement for a dif-
ferent speaker. The approximate locations of the 3 pellets that
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Fig. 5. Error (RMSE) incurred by the RBF prediction of the
tongue contour wrt the ground-truth contour. Left: RMSE (mm)
for each contour point (averaged over all contours in the dataset)
for different numbers K of landmarks, for the optimal landmark
placement. Right: RMSE (mm) for each contour (averaged over
all contours in the dataset and over all points in the contour), as
a function of the number of landmarks K, for: the worst place-
ment of the landmarks over the combinations we considered
(solid line), the average over all combinations (dashed), and the
optimal placement (dotted, corresponding to the left panel).
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Fig. 6. Like Fig. 5 but for the spline interpolation instead of the
RBF prediction. Note the different scale in the Y axis.

were used in the MOCHA database are quite close to the opti-
mal ones. From Fig. 5 we then estimate that the tongue contours
may be reconstructed from the 3 MOCHA pellets with an error
of around 0.3 mm at each point on the tongue contour. The fact
that the “worst” and “average” lines in Fig. 5 (right) increase
the error by only about 0.1 mm means that, if we cannot place
the landmarks optimally as given by Fig. 7, the following recipe
will yield near-optimal results: place two pellets 2 to 4 mm from
the tongue ends (tip and root, i.e., as far forward and backward
as possible), and place the remaining K − 2 pellets so all K
pellets are regularly spaced.

5. Conclusion
We have shown that realistic tongue contours (with errors well
below 0.4 mm) may be predicted from as few as 3–4 landmarks
(optimally located on the tongue) using a nonlinear mapping
learned from ultrasound data. This information may be used to
determine the optimal number and locations of pellets for EMA
and X-ray microbeam technology. Although our dataset was
small and limited to one speaker, the results demonstrate the ap-
proach is much more successful than spline interpolation, and
quantify the extent to which the EMA/X-ray data is a good rep-
resentation of the tongue. Future work will involve adapting the
model to a different speaker for which we have no (or very lit-
tle) data; animating tongue contours for vocal tract visualisation
of EMA/X-ray databases; and augmenting the tongue represen-

10 mm

10
 m

m

K = 2

K = 3

K = 4

K = 5

K = 3
(MOCHA)

Fig. 7. Optimal location of K landmarks (for K = 2, 3, 4, 5)
depicted on a sample tongue contour (the tip is to the right and
the root to the left). The bottom contour shows the approximate
location of the 3 pellets used in the MOCHA database.

tation in data-driven methods for articulatory speech synthesis
and articulatory inversion. This will improve our understanding
of the limitations of current articulatory databases for articula-
tory inversion, articulatory synthesis and vocal tract visualisa-
tion. The method is also applicable to predicting the 3D shape
from landmarks if 3D ground truth is available.
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