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Abstract

The first generation of three-dimensional Electromagnetic Ar-
ticulography devices (Carstens AG500) suffered from occa-
sional critical tracking failures. Although now superseded by
new devices, the AG500 is still in use in many speech labs
and many valuable data sets exist. In this study we investigate
whether deep neural networks (DNNs) can learn the mapping
function from raw voltage amplitudes to sensor positions based
on a comprehensive movement data set. This is compared to
arriving sample by sample at individual position values via di-
rect optimisation as used in previous methods. We found that
with appropriate hyperparameter settings a DNN was able to
approximate the mapping function with good accuracy, lead-
ing to a smaller error than the previous methods, but that the
DNN-based approach was not able to solve the tracking prob-
lem completely.

Index Terms: Electromagnetic Articulography, 3D-EMA, po-
sition estimation, deep neural networks, DNN, speech articula-
tion

1. Background

Electromagnetic Articulography (EMA) allows measuring the
movements of the speech articulators in real-time without re-
lying on a line of sight between the studied articulators and
the device. Over the last decades it has become an important
tool in experimental phonetics [1]. Starting out in the 1980s
as limited two-dimensional system confined to the midsagittal
plane, method and devices have matured over time to track si-
multaneously several sensors with sufficient temporal resolu-
tion and spatial accuracy. At the begin of the century the first
three-dimensional system (3D-EMA) was introduced, first as
prototype [2, 3], and later as a commercial system, the Carstens
AGS500. Currently, two commercial systems are available: the
AG501 (Carstens Medizinelektronik GmbH) and the Wave Sys-
tem (Northern Digital, Inc.).

The systems use different device architectures and algo-
rithms but share the underlying principle: A small sensor coil is
placed in a alternating electromagnetic field created by a num-
ber of transmitter coils part of the main device. The electro-
magnetic field induces a very weak voltage in the sensor coils.
The strength of the induced signal depends on the distance of
the sensor from the transmitter and the relative orientation dif-
ference between the transmitter and sensor coil axes. With a
single-axis-coil sensor only five of the six degrees of freedom
can be recovered: the three location coordinates (X, y, z) and two
of the three orientation parameters (azimuth, elevation). The ro-
tation of the sensor around its own axis does not lead to a change
in the induced signal and can therefore not be estimated.
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The first generation of 3D-EMA devices, solely the AG500
mentioned above, had six transmitters coils mounted to a plex-
iglass cube at different locations and in different orientations,
designed to yield an overdetermined set of equations for es-
timating the sensor position. Since the electromagnetic field
equation contains non-linear terms and no analytic solution is
known, a non-linear optimisation method has to be employed
(e.g., Newton-Raphson, Levenberg-Marquardt). Despite being
able to rely in general on good starting values in the form of the
previous sample, the optimisation often fails to converge on the
proper value. Reports on the accuracy vary slightly based on
the evaluation method and error measure used [4, 5, 6, 7, 8], but
all note occasionally occurring very large errors.

In previous work [6], the first author of the present pa-
per showed that these big errors do not necessarily arise in the
form of a sudden jumps. The calculated trajectories can devi-
ate smoothly but increasingly from the true trajectories, render-
ing it very difficult to identify mistracking in real-world exper-
iments. Stella et al. [7] demonstrated that the the episodes of
tracking failure are largely due to numerical instabilities of the
optimisation methods in certain areas of the combined location-
orientation space and the more recent devices (the Wave system
and the AG501) do not suffer from these shortcomings any more
due to an increased number of transmitters. The AG500, how-
ever, is still in use in many research labs and valuable data set
have been recorded in the past, some of them might never be
recorded again (e.g., the data set used in [9]). Because of the
aforementioned problems, frequently substantial portions had
and have to be discarded. We deemed it therefore worthwhile
to investigate whether an alternative method of determining the
position data from the voltage amplitudes could mitigate the
tracking problems or, ideally, completely remove them. Ob-
viously, that latter will be only possible if they are not due to
deconvolution artefacts or other system-immanent noise and are
solely caused by optimisation errors. This might be indeed the
case as [7] concluded.

A promising approach providing such an alternative to the
commonly used direct optimisation methods is to use deep
learning with artificial deep neural networks (DNNs, [10, 11],
for a review see [12]) to learn the functional mapping from the
data. The development history of deep neural nets goes back at
least two decades but only within the last years their success in a
variety of classification, detection and synthesis tasks has made
them the most popular techniques in machine learning. Shallow
artificial neural networks with only one hidden layer have been
shown to be able to theoretically approximate any continuous
function [13]. However, given complex functions the number of
nodes in the hidden layer might need to be exceedingly large. It
has been also shown that deep neural networks, that is, networks



with many hidden layers, reduce the number of required nodes
substantially [14]. Initial procedural problems of how to train
these network were overcome and the necessary computational
resources are now available and very large data set widespread.

In the current study, the task appears to be relatively sim-
ple, a non-linear regression requiring only a mapping from a
six-dimensional input space to a five-dimensional output space.
By ignoring the orientation angles, which are seldom used in
speech research, the output space even reduces to three dimen-
sion. However, due to the complexity of the electromagnetic
field and in particular the impact of orientation angle changes,
the mapping is far from being an easy inverse problem. In ad-
dition, it is difficult to acquire a data set that approximately
equally samples the entire output space, because the sensors
have to be physically moved and not only the EMA measure-
ments have to be acquired but also some kind of ground truth.
Accordingly the (deep) neural net has to learn from an incom-
plete and potentially biased data set.

Figure 1: The container with the EMA sensors and OPT mark-
ers.

Our starting point in the current study is the dataset acquired
for the evaluation of the AG500’s measurement accuracy in [6].
Serving as ground truth are recordings simultaneously acquired
with a more precise, optical motion capture system (see Method
section).

Our research question was whether a deep neural network
(DNN) would be able to approximate the mapping function
sufficiently close to produce more accurate location coordi-
nates than achieved with the direct methods and, in particular,
whether the DNN would be able to avoid the occasional large
deviations seen in the direct methods. We hypothesised that (i)
a DNN would be able to learn the mapping function and (ii)
would be able to improve substantially on the direct methods.
The criterion value for (i) was set to the root mean squared er-
ror (RMSE) value achieved by the direct methods. If the DNN
would score among them or better, the hypothesis would be con-
sidered confirmed. The criterion for (ii) was set to the RMSE
error value of the direct methods resulting after deviations above
the Euclidean distance threshold of 10 mm were manually ex-
cluded for the direct methods (see [6]), but not the DNN.

Note that we did not intend to utilise the temporal order
of the samples, despite the fact that for speech movements a

high degree of smoothness can be assumed with the potential
exception of trills and cases in which an articulator movement is
stopped by a rigid boundary, e.g. tongue tip movements halted
by the hard palate in some stop consonants (if the tongue is not
gliding along the hard palate). Our aim was to examine whether
the true underlying mapping function could be recovered.

2. Method
2.1. Data acquisition

As the data acquisition is described in detail in [6], we will
only briefly summarise it here. We acquired a rich set of move-
ment data with the AG500 (henceforth shortened to EMA) at
the MARCS Institute (Western Sydney University, Australia)
together with recordings with the optical, marker-based Vicon
system (henceforth OPT). The tracking with the latter system
was accomplished with eight MX-40 cameras and the manufac-
turer claims an accuracy of 0.1 mm. The data of the two sys-
tems were temporally aligned using a trigger signal produced
by the AG500’s Sybox and spatially aligned by wrapping a set
of EMA markers with reflective foil, turning them into simul-
taneous OPT markers. The marker-sensor combinations were
spread across the measurement field in the EMA cube and a
few static trials recorded.

For the movement trials the EMA sensors were fixed in a
custom-build container and the OPT markers fixed to a three-
dimensional cross-shaped structure attached to the container
(see Figure 1). The container enabled to examine sensor ori-
entation angles that are, of course, not returned by the OPT
system, but can be computed via rigid-body pose estimation al-
gorithms (e.g., Generalized Procrustes method [15], for use in
3D-EMA see also [16]). The container was manually moved by
an experimenter. We recorded eight different sets of movements
each with 40 trials: three sets with predominately translational
movements along the three major coordinate axes, three with
rotational movements around the major coordinate axes, one
set with no motion and one set with unconstrained movements,
comprising a combination of all translations and rotations. The
sample rate was 200 Hz and a single trial lasted for 10 s, yield-
ing 2000 samples.

Table 1: Number of ambiguous amplitude-position relations out
of the possible total of 1.84 - 10'°.

Threshold  Frequency
0.0001 0
0.001 409
0.01 87,282
0.1 3,903, 096

The raw EMA data (voltages) were processed with both
available routines: CalcPos from the manufacturer and TAPAD
from the Phonetics Department of Munich University [17]. The
locations of the EMA sensors and OPT markers relative to each
other in/at the container across systems were determined by us-
ing the static trials, in which the container was motionless sus-
pended in the cube centre, and by taking the mean coordinate
differences of the centre of gravity for both systems of all static
trials after spatial (and temporal) alignment of the coordinate
systems described above. Subsequently, the locations and ori-
entation of the EMA sensors were sample-wise predicted from
the OPT data based on pose estimations of the container loca-



tion and orientation.

Table 2: Correlation (Pearson’s p) between estimated values
and target values for the evaluation set.

X Y V/ Average
0.995 0994 0.994 0.994

2.2. DNN-based estimation

In the current study, the voltage amplitudes constitute the pre-
dictor variable and the sensor position data the predicand vari-
able. To keep the amount of data manageable and remove high-
frequency noise, both data sets were downsampled from the
original 200 Hz to 50 Hz using Matlab’s ’resample’ function,
which includes the appropriate low-pass filtering. Visual in-
spection of the data let us to discard all trials consisting only
of a single movement type (e.g., translations in the x dimension
or rotations around the z axis, etc.), and retain only the trials,
which combined all movements. The inclusion of the data sets
with single movement types would have strongly biased the data
set. We concatenated the data of the 12 sensors recorded simul-
taneously and treated same as separate, individual observations.
This resulted in a total of 240,000 samples.

The data were split file-wise into a training set (80% of the
data) and a final evaluation set (20% of the data). The train-
ing set was in turn arranged for a four-fold validation: Each
fold consisted of a new random (without replacement) split of
the files into training data (75%) and test data (25%). The final
evaluation set was only used to test the trained network on pre-
viously unseen data after all hyper-parameters were determined
and all network parameters learned on the full training set.

‘We used the Matlab Neural Networks toolbox (The Math-
works, Inc.) for designing, training and evaluating the deep
neural networks. We focussed on a class of networks intended
for non-linear regression by Matlab, a fully-connected feed-
forward architecture with hyperbolic tangent sigmoid activa-
tion functions on the hidden layers and a linear activation on
the output layer. The input data were the voltage amplitude
data, the target data the three Cartesian location coordinates.
We excluded the orientation angles in the current study since
the cyclic nature of angles requires a different output activa-
tion function. The order of the samples in the source and target
data sets was randomised (using of course the same random per-
mutation indices for both sets) to ensure that within each fold
and the full set, the data were as balanced as possible. As loss
function the mean squared error between the target data and the
output estimation of the network was chosen. We will report
all results, however, using the root mean squared error (RMSE)
over all samples of the respective data sets in order to be able to
state the error in the original unit (mm).

Before training any network, we examined whether the
mapping between amplitude values and location coordinates
was unique. If the function assumption was violated and the
same amplitude values (up to a very small remaining difference)
would lead to different location coordinates (above a minimal
noise-related threshold), no context-free network would be able
to learn the mapping completely, the degree of the failure de-
pendent on how prevalent these ambiguous relations were. We
tested the training set sample by sample for ambiguous rela-
tions. The amplitude threshold was successively set to 0.0001,
0.001, 0.01 and 0.1, respectively. The threshold for location dif-

RMSE (mm)
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Figure 2: Root mean squared error based on the Euclidean dis-
tance between EMA and OPT location coordinates. The DDN-
based approach on the left in green, the direct methods in the
centre (CalcPos in blue, TAPAD in magenta) and the direct
methods with Euclidean distances larger then 10 mm manually
excluded before the calculation of the error on the right (Cal-
cPos in blue, TAPAD in magenta).

ferences was set to 0.1 mm and for orientation angles at 0.5 de-
gree. The results are summarised in Table 1. No ambiguous re-
lations were found for amplitude differences smaller than 0.001.
Thus, if these smaller differences were not just due to random
variation (noise) or deconvolution artefacts, a sufficiently pow-
erful neural net should be able to find a solution.

After extensive experimentation with different network
topologies, we fixed the layout preliminary with 24, 48 and 36
nodes on the hidden layers (24-48-36). The Matlab toolbox ap-
pears to have implemented neither dropout nor mini-batches for
the ’fitnet’ class of networks and relies on a method akin to
early stopping. Since we considered more regularisation nec-
essary and dropout could have only be added in the form of a
work-around procedure, we implemented the mini-batch train-
ing. Four mini-batches containing randomly (without replace-
ment) selected 24.9% of the training data were employed.

We tested three versions of the input data: the original am-
plitude data, a version where we boosted the significance of the
lower digits of the amplitude data by splitting up the numbers
in two sets of variables and the third version, in which we in-
cluded context samples as separate variables. In the second ver-
sion the first subset of variables contained the amplitude values
floored to the second digit and the second subset the remainder
rounded to the fifth digit. The remainder was scaled by 100 to
push it into a comparable value range to the first subset. Ac-
cordingly, this version had 12 input variables to be mapped to
the same three output variables. Although it cannot be assumed
that the underlying function to be learned is very smooth ev-
erywhere since e.g. small orientation differences relative to a
particular transmitter might cause large changes in the induced
signal at certain orientations, we still considered it worthwhile
to include context samples as input variables. The reason be-
hind this was not to exploit the temporal order, but to give the
network a chance to average over a couple of samples should
that be advantageous for the estimation. Before the temporal
order was randomised, the two samples preceding the one to be
estimated and the two following it were added as separate vari-
ables to the input data, making the input 30-dimensional. We
also enlarged the first hidden layer from 24 to 30 nodes for this
version of the input data.
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Figure 3: 250-sample point example of the z-coordinate from a test set movement trajectory. The estimation of the deep neural network
(EMA-DNN) is compared with one of the direct methods (EMA CalcPos) and the OPT tracking serving as ground truth.

The modified input data led to a deterioration in the perfor-
mance in the training and were discarded. Instead we proceeded
with exploring two alternative network topologies. Given that
the training error was still relatively high, we increased network
depth, firstly by having a wide middle layer in an otherwise deep
and narrow structure (12-12-48-12-12 nodes), secondly, by in-
creasing depth further in a uniformly narrow structure (12-12-
12-12-12-12-12 nodes). The latter network produced the best
four-fold training set results and was adopted as the final net-
work. The following additional parameters were used: Gra-
dient computation in backpropagation: Levenberg-Marquardt
[18]; maximum number of training epochs: 1000; error goal:
0; maximum number of validation tests without improvement
before stopping: 50; minimum gradient for proceeding: 10~7;
learning rate at start: 0.001; learning rate decrease (automatic
adaptation): 0.1; learning rate increase (automatic adaptation):
10; maximum learning rate: 10°.

3. Results

The resulting RMSE values for the final evaluation data set are
shown in Figure 2 together with the RMSE values for the di-
rect method as determined in [6]. As an additional measure we
determined the correlation between the location coordinates es-
timated by the neural network and our ground truth coordinates.
They correlation coefficients are displayed in Table 2.

4. Discussion

In general, the DNN can clearly learn the mapping function.
The correlation values in Table 2 show that an overall good fit
is achieved. The remaining RMSE error is substantially lower
than the one of the direct calculation methods. We see there-
fore our first hypothesis confirmed. The RMSE error, however,
is still too high to comfortably adopt the trained DNN as esti-
mation method for data used in speech research, because even
small tongue position differences can cause acoustic distinctive-
ness that is meaningful to the perceiver. Figure 3 shows a typical
difficult example of the estimation of the sensor coordinates, in
this case the z coordinate, together with the OPT-based predic-
tion and the direct determination using the CalcPos routine. As
can be seen, the DNN’s estimation is far from perfect, but avoids
some of the extreme deviations of the direct method. However,
it appears to often underestimate extremes and on the other hand
occasionally create large erroneous peaks. The RMSE is still

substantially higher than the one of the direct methods after de-
viations with a Euclidean distance error larger than 10 mm were
manually excluded and, thus, our second hypothesis was not
confirmed.

A reason for the remaining problems could be that our data
set is not balanced enough and misses data points in some of the
critical regions of the five-dimensional output space, where a
large gradient in the position data corresponds to small changes
in the voltage amplitudes. Another potential explanation is that
despite the low number of input and output variables still larger
networks are required to further reduce the error. For larger
networks, however, more and better fine-tuned regularisation
would be necessary since we already registered substantially
bigger errors on the evaluation set than the training set, sug-
gesting overfitting.

A clear advantage of the DNN approach is its speed. Al-
though the training is computationally very intense and slow,
the actual computation of the coordinates with the final network
is very fast. Its primary components are matrix multiplications,
which have become very fast on modern computers. In our set-
up the computation of all 48,000 samples of the test set (equiv-
alent to 20 s of tracking of all twelve sensors at the full sample
rate of 200 Hz) took 88 ms (averaged over 1000 trials). When
we computed the position data for the original accuracy study
on an comparable machine, each file consisting of 24,000 sam-
ples required several minutes of computation.

In future work we will seek more fine grained control over
network parameters, in particular with respect to regularisation
methods and choices of activation functions in the hidden lay-
ers. The deep learning software libraries Caffe and Tensorflow
together with their Python interfaces offer the required flexibil-
ity. We will in particular investigate the deep version of mixture
density networks [19]. Based on the results of the current study
we will also attempt a modified learning approach: We will
focus the network’s learning on the direct methods’ deviation
from the correct measurements by supplying the DNN with the
additional input of the position data from the direct methods.
In this way, the DNN should learn to detect these deviations,
while relying otherwise on the rather accurate results of the di-
rect methods.
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